Chip One Stop – 电子元器件、半导体的销售网站
Menu
Hong Kong
Change
中文
SELECT YOUR LANGUAGE
美元
SELECT YOUR CURRENCY FOR DISPLAY
关于优惠等级和折扣率

目前的商品价格将适用于以下


・根据顾客的购买情况可以享受优惠和折扣
・关于折扣仅限于从本网站直接下单的订单
・部分产品和阶梯数量不被包含在优惠折扣产品中
・关于优惠等级的详细信息请联系您的销售人员
・不能与其它优惠同时使用

新闻中心

Toshiba’s Electrostatic Discharge (ESD) Protection Device with 0.13μm Process for Analog Power Semiconductor Improves ESD Characteristics

2016/06/16Toshiba  模拟

 

June 15, 2016

 

TOKYO—Toshiba Corporation (TOKYO: 6502) has developed an electrostatic discharge (ESD) protection device for analog power semiconductor application, fabricated with advanced 0.13μm process technology, that optimizes the structure of transistor and significantly improves ESD characteristics. ESD protection is much more robust, up four times, and the standard deviation is only 1/12 that of the conventional structure. Analysis of 3D simulations has also allowed Toshiba to identify a mechanism for optimizing transistor structure to boost ESD robustness. Toshiba announced these advances at “ISPSD2016”, the international semiconductor symposium held in Czech on June 14, 2016.


Injections of ESD surges, whether from the human body or equipment, have the potential to destroy semiconductor devices, as ESD current flows cause local temperature increases inside silicon. ESD protection devices are required to protect internal circuit. This is especially true for analog power semiconductor devices required to apply 10V to 100V, which need a high rated voltage. In this case, ESD protection devices must ensure high current flow, which results in enlarged chip size. Shrinking the size of the ESD protection device is an issue in realizing more compact chips.


Using 3D simulation analysis of an ESD event, Toshiba found out that ESD induced destruction is caused by lattice temperature increase due to the current flowing at the highest electric field point. Modifying the transistor structure, which extending the drain low resistive region to the source direction and suppressing the lateral silicon resistance, shifts the current flow from the bottom of the drain to source direction and detaches it from the highest electrical field point. This optimized design was found to increase ESD robustness by up to four times and to decrease the standard deviation down to 1/12. In addition, the device size required to ensure HBM* ±2000V was cut by 68%.


Toshiba offers advanced analog process platforms, with 0.13μm process technology, that can be embedded with the transistors such as CMOS, DMOS, bipolar transistor and the passive devices such as resistor and capacitor. User can select a process suited to each application from three process platforms: “BiCD-0.13” is mainly for automotive (DMOS line up is up to 100V); “CD-0.13BL” is mainly for motor control drivers (DMOS line up is up to 60V); and “CD-0.13” process is mainly for power management IC (DMOS line up is up to 40V).


Toshiba plans to release products using the CD-0.13 process applied in this technology in 2017 and proactively continue to implement to other process platforms to improve electrostatic discharge characteristics.


* HBM (Human Body Model) : one of the parameter to indicate ESD robustness


<Toshiba Corporation- Semiconductor and Storage Products Company Website>
http://toshiba.semicon-storage.com/ap-en?mm=cp160615&no=04


Visit Chip1Stop Chinese site
Visit Chip1Stop Korean site
Visit Chip1Stop English site
Visit Chip1Stop German site


企业HP:
http://toshiba.semicon-storage.com/ap-en?mm=cp160615&no=04

Toshiba新闻发布

相关新闻