Chip One Stop - Shopping Site for Electronic Components and Semiconductors
Menu
Romania
Change
English
SELECT YOUR LANGUAGE
USD
SELECT YOUR CURRENCY FOR DISPLAY
About Preferential Rank / Discount

Current price of Item(s) have been applied below.
 


・Preferential Rank and Discount rate will be applied according to your usage of our web service.
・Discount is only applicable to orders from chip1stop web site.
・Discounts may not be applicable to all products and may be subject to MOQ.
・Please contact your representative for details of Preferential Rank.
・No other coupons may be used in conjunction with this discount.

News Center

ADI Detecting and Distinguishing Cardiac Pacing Artifacts

2012/11/13Analog Devices  Analog

 

John Kruse and Catherine Redmond


When heart patients with implanted pacemakers undergo electrocardiogram (ECG) testing, a cardiologist must be able to detect the presence and effects of the pacemaker. The electrical signature—or artifacts—of the pacing signal consists of small, narrow pulses. Buried in noise and larger cardiac signals, these artifacts can be difficult to detect. This article describes the nature of pacing artifacts and introduces a device and methodology to detect them. The heart, a biochemical-electromechanical system, develops an electrical impulse that travels from the sinoatrial (SA) node in the upper right atrium to the atrioventricular (AV) node. The SA node acts as the pacemaker for the system (Figure 1).


This electrical impulse generates the P wave, which can be seen on the ECG capture in Figure 2. From the AV node, the electrical signal propagates, via the His-Purkinje system, to the ventricles, causing the ventricle muscles to contract. Their contraction (the R wave) moves oxygenated blood from the left ventricle into and through the body—and deoxygenated blood from the right ventricle to the lungs.


When the electrical system doesn’t work perfectly, many different heart conditions can occur. For example, bradycardia occurs when the heart beats too slowly or misses beats. A typical surgical intervention for this condition would be to implant a pacemaker device (pulse generator) just under the skin of the patient’s chest, with endocardial leads routed through the veins directly to the heart, as shown in Figure 3. In another class of arrhythmias, called tachycardia, the heart beats too fast. This very serious condition is treated with implantable cardiac defibrillators (ICDs). Modern ICDs can also treat many bradycardia arrhythmias. Heart failure can occur when the heart becomes enlarged, lengthening its conduction paths and upsetting the timing of the ventricular contractions. This forms a positive feedback system, further aggravating the heart. Implantable cardiac resynchronization (ICR) devices retime the ventricles by pacing both ventricles and usually one atrium. These devices actually improve cardiac output, allowing the heart to recover to a certain degree. Cardiac resynchronization therapy (CRT) devices include an ICD as part of the system.


Companies Website:
http://www.analog.com/en/index.html

Analog Devices News Release

Related News Release