Chip One Stop - Shopping Site for Electronic Components and Semiconductors
Menu
Finland
Change
English
SELECT YOUR LANGUAGE
USD
SELECT YOUR CURRENCY FOR DISPLAY
About Preferential Rank / Discount

Current price of Item(s) have been applied below.
 


・Preferential Rank and Discount rate will be applied according to your usage of our web service.
・Discount is only applicable to orders from chip1stop web site.
・Discounts may not be applicable to all products and may be subject to MOQ.
・Please contact your representative for details of Preferential Rank.
・No other coupons may be used in conjunction with this discount.

News Center

Toshiba’s newly developed fully isolated N-channel LDMOS realizes high HBM robustness and high breakdown voltage to negative bias in 0.13-micron generation analog power semiconductors

2017/06/07Toshiba  Analog


June 1, 2017


Storage & Electronic Devices Solutions Company


Toshiba has developed fully isolated N-channel LDMOS*1 technology that overcomes the trade-off between breakdown voltage to negative bias (BVnb) and HBM*2 robustness, a measure of resistance to electrostatic discharge (ESD). Details of this achievement were reported on June 1 at ISPSD 2017 (International Symposium on Power Semiconductor Devices and ICs 2017), an IEEE-sponsored international conference on power semiconductors, held in Japan.


Recent years have seen an increasing need for automotive analog ICs and Power ICs with fully isolated Nch-LDMOS and high BVnb, especially devices supporting voltages of 40V and over. Achieving a higher BVnb has until now required a trade-off with securing HBM robustness, and achieving both has required a bigger die, in order to electrically isolate substrates and the inside of the die. This has impeded progress in miniaturization and cost reduction. Furthermore, since HBM robustness is a parameter that is difficult to estimate without actually fabricating devices, a new parameter for estimating HBM robustness was strongly required.


In order to overcome the trade-off between HBM robustness and BVnb while minimizing die size, Toshiba conducted 2D TCAD simulations of numerous parameters and found that current flow concentration, which corresponds to the peak value of the electric field under the drain region (EUD*3), depends on HBM robustness. As a result of utilizing EUD to optimize die characteristics by adjusting various parameters, Toshiba successfully improved HBM robustness while achieving a rated voltage of 25 to 96V. This also realized a die size reduction of 46% for 80V fully isolated Nch-LDMOS products, satisfying HBM +/-4kV, a measure of HBM robustness.


Toshiba has produced prototypes of BiCD-0.13G3 process-based*4 devices using the new technology and plans to start mass production in fiscal year 2018. The company is committed to contributing to the realization of lighter, more efficient automobiles and improving their performance by expanding the range of products offering fully isolated Nch-LDMOS.


*1 Fully isolated N-channel LDMOS: A laterally diffused MOS transistor with a structure that reduces the electric field between the drain and gate by fully isolating them electrically.
*2 HBM (Human Body Model): a model for characterizing the susceptibility of electronic devices to ESD, based on ESD from the human body.
*3 EUD (Electrical field under Drain region): Electric field strength observed under the drain source.
*4 BiCD-0.13G3 process technology: One of Toshiba’s power semiconductor process technologies. Users can select the process that suits their application: BiCD-0.13G1/G2/G3, mainly for automotive devices; CD-0.13G3, mainly for motor control drivers; and CD-0.13G1/G2, mainly for power management IC.


Information in this document, including product prices and specifications, content of services and contact information, is correct on the date of the announcement but is subject to change without prior notice.


Toshiba Corporation- Semiconductor and Storage Products Company Website>
http://toshiba.semicon-storage.com/ap-en?mm=cp170606&no=04

 


 


Visit Chip1Stop Chinese site
Visit Chip1Stop Korean site
Visit Chip1Stop English site
Visit Chip1Stop German site











Companies Website:
http://toshiba.semicon-storage.com/ap-en?mm=cp170606&no=04

Toshiba News Release

Related News Release